We agreed that MidTerm Exam will be held in October 31-th at 15:30 in 103f.
During the MidTerm Exam you must solve 5 problems in
https://imimsociety.net/en/14-cryptography
namely: DH-KAP, MIM Attack, RSA Sign., RSA Enc., AKAP with RSA.
Register to the site in the similar way as you are registering in eShop.
After that you will receive 10 Eur virtual money to purchase the problems.
Please purchase only one problem at time and after solving it purchase the next one.
Course Works (CW) list is presented in my Google drive
https://docs.google.com/document/d/1GDVZuRPtmQ5Z--IdqGunPx_3qOGSfrpR/edit? usp=sharing\&ouid=111502255533491874828\&rtpof=true\&sd=true
Please choose topic and label it by the first letter of surname dot name, e.g. S.Name.
For some of topics the group project realization can take place.
Requirements for CW you can find in http://crypto.fmf.ktu.lt/xdownload/ in files Course_Work

Symmetric encryption

AES-128, 192, 256

Public Key CryptoSystems - PKCS

ElGamal Cryptosystem

1.Public Parameters generation

Generate strong prime number p.
Find a generator g in $Z_{p}{ }^{*}=\{1,2,3, \ldots, p-1\}$ using condition.
Strong prime $p=2 q+1$, where \boldsymbol{q} is prime, then g is a generator of $Z_{p}{ }^{*}$ iff
$g^{q} \neq 1 \bmod p$ and $g^{2} \neq 1 \bmod p$.
Declare Public Parameters to the network P P $=(\mathrm{p}, \mathrm{g})$; $\quad \mathrm{p}=\mathbf{2 6 8 4 3 5 0 1 9 ;} \mathbf{g = 2}$.
2^{\wedge} 28-1 $=268,435,455$
>> int64(2^28-1)
ans $=268435455$
>> dec2bin(ans)
ans = 1111111111111111111111111111

Alice

Alice

$\sigma=\operatorname{Sig}\left(\operatorname{PrK}_{A}, \mathrm{~m}\right)$
$\mathbf{V}=\operatorname{Ver}\left(\right.$ Pub $\left._{A}, \boldsymbol{\sigma}, \mathbf{m}\right), \mathbf{V} \in\{$ True, False $\} \equiv\{1,0\}$

Asymmetric Signing - Verification

2. Key generation

- Randomly choose a private key \boldsymbol{X} with

$1<x<p-1$.

- Compute $a=g^{X} \bmod p$.
- The public key is $\mathrm{PuK}=\boldsymbol{a}$.
- The private key is $\operatorname{PrK}=\boldsymbol{X}$.

Asymmetric Encryption - Decryption $c=E n c\left(\right.$ PuK $\left._{A}, m\right)$
 $\mathbf{m}=\operatorname{Dec}\left(\operatorname{PrK}_{A}, \mathbf{c}\right)$

El-Gamal E-Signature

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty of computing discrete logarithms.
It was described by Taker ElGamal in 1984. The ElGamal signature algorithm is rarely used in practice.
A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used.
The EIGamal signature scheme allows a third-party to confirm the authenticity of a message sent over an insecure channel.
From <https://en.wikipedia.org/wiki/ElGamal signature scheme>
$\begin{aligned} \text { EC Gama sign. } & \rightarrow \text { Digital Signature Alg. (DSA) NSA } \\ & \rightarrow \text { Elliptic Curve DSA - ECDSA Certicom }\end{aligned}$

3.Signature creation

To sign any finite message \boldsymbol{M} the signer performs the following steps using public parametres PP.

- compute $\mathrm{h}=\mathrm{H}(\boldsymbol{M})$.
- Choose a random k such that $1<k<p-1$ and $\operatorname{gcd}(k, p-1)=1$.
- $k^{-1} \bmod (p-1) \operatorname{computation:~} k^{-1} \bmod (p-1)$ exists if $\operatorname{gcd}(k, p-1)=1$, ie. k and $p-1$ are relatively prime. k^{1} can be found using either Extended Euclidean algorithm t or Euler theorem or
>> k _m1=mulinv(k,p-1) $\quad \% \mathbf{k}^{-1} \bmod (p-1)$ computation.
- Compute $r=g^{k} \bmod p$
- Compute $s=(h-x r) k^{-1} \bmod (p-1)-->h=x r+s k \bmod (p-1)$,

Signature $\boldsymbol{\sigma}=(\mathbf{r}, \mathbf{s})$

4.Signature Verification

A signature $\boldsymbol{\sigma}=(\boldsymbol{r}, \boldsymbol{S})$ on message \boldsymbol{M} is verified using Public Parameters $\mathrm{PP}=(\mathbf{p}, \mathbf{g})$ and $\mathrm{PuK}_{\mathrm{A}}=$ a.

1. Bob computes $\mathbf{h}=\mathrm{H}(\mathrm{M})$.
2. Bob verifies if $\mathbf{1 < r}<\boldsymbol{p}-1$ and $1<s<p-1$.
3. Bob calculates $\mathbf{V} \mathbf{1}=\mathrm{g}^{\mathbf{h}} \boldsymbol{\operatorname { m o d }} \mathbf{p}$ and $\mathbf{V} \mathbf{2}=a^{r} r^{s} \bmod p$, and verifies if $\mathbf{V} \mathbf{1}=\mathbf{V} \mathbf{2}$.

The verifier Bob accepts a signature if all conditions are satisfied and rejects it otherwise.

5. Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be accepted by the verifier.
The signature generation implies
$h=x r+k s \bmod (p-1)$
Hence Fermat's little theorem implies that all operations in the exponent are computed mod ($p-1$)
$g^{h} \bmod p=g^{(x r+k s) \bmod (p-1)} \bmod p=g^{x r} g^{k s}=\left(g^{x}\right)^{r}\left(g^{k}\right)^{s}=a^{r} r^{s} \bmod p$ vI VI

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

$$
\mathrm{p}=268435019 ; \mathrm{g}=2 .
$$

Let message \boldsymbol{m} needs to be encrypted, e.g. $\boldsymbol{m}=111222$.

$$
\Rightarrow m<p \Rightarrow m \text { mod } p=m .
$$

A:
$\beta: r \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right)$
 $c=(E, D)$ using bet $\operatorname{Pr}_{A}=X$.
$(-x) \bmod (p-1)=(0-x) \bmod (p-1)=$
$=(p-1-x) \bmod (p-1)$
β : is able to encrypt m to $A: m<p$

1. $D^{-x \bmod (p-1)} \bmod p$
2. $E \cdot D^{-x} \bmod p=m$
$D^{-x} \bmod p$ computation using Fermat theorem: If p is prime, then for any integer a holds $\boldsymbol{a}^{p-1}=\mathbf{1} \bmod \boldsymbol{p}$.

$$
\begin{aligned}
& D^{p-1}=1 \bmod p \quad / \cdot D^{-x} \\
& D^{p-1} \cdot D^{-x}=1 \cdot D^{-x} \bmod p \Rightarrow D^{p-1-x}=D^{-x} \bmod p \\
& D^{-x} \bmod p=D^{p-1-x} \bmod p
\end{aligned}
$$

Correctness

$$
\begin{gathered}
\operatorname{Enc}_{P \| K_{A}}(m, r)=c=(E, D)=\left(E=m \cdot a^{r} \bmod p ; D=g^{r} \bmod p\right) \\
\operatorname{Dec}_{P-k_{A}}(c)=E \cdot D^{-x} \bmod p=m \cdot a^{r} \cdot\left(g^{r}\right)^{-x} \bmod p= \\
=m \cdot\left(\frac{g^{x}}{a}\right)^{\mu} \cdot g^{-r x}=m \cdot g^{x r} \cdot g^{-r x}=m \cdot g^{x r-w x} \bmod p=m \cdot g^{\bmod } \bmod = \\
=m \cdot 1 \bmod p=m \bmod p=m \\
\text { since } m<p
\end{gathered}
$$

If $m>p \rightarrow m \bmod p \neq m ; 27 \bmod s=2 \neq 27 . \quad$ AsCII
If $m \angle p \rightarrow m \bmod p=m ; 19 \bmod 31=19 . \quad \frac{2048}{\ell}=$

If $m<p \rightarrow m \bmod p=m ; 19 \bmod 31=19$. Decryption is correct if $m<P$.

ElGamal encryption is probabilistic: encryption of the same message (m) two times yields the different cuphertexts c_{1} and c_{2}.
1-st encryption:
$r_{1} \leftarrow \operatorname{randi}\left(\mathcal{L}_{p}^{*}\right)$
$\left.\left.\begin{array}{r}E_{1}=m \cdot a^{r_{1}} \bmod p \\ D_{1}=g^{r_{1}} \bmod p\end{array}\right\} C_{1}=\left(E_{1}, D_{1}\right)\right)$

Necessity of probabilistic encryption.
Encrypting a message with textbook RSA always yields the same ciphertext, and so we actually obtain that any deterministic scheme must be insecure for multiple encryptions.

Tavern episode

Key agreement protocol using ElGamal encryption
How to encrypt large data file: Hybrid enc-dec method.

1. Parties must agree on common symmetric secret k for symmetric block cipher, e.g. AES-128, 192,256 bits. $B: 1) k \leftarrow \operatorname{randi}\left(2^{256}\right)$
Io $_{0} \operatorname{Enc}\left(\operatorname{PuK}_{A} ; k\right)=c=(E, D) \xrightarrow{c} A$:

3) $\operatorname{sig}\left(\operatorname{Pr} K_{B}, C\right)=\sigma=(\Gamma, s)$

Homomosphic property ot
ElGamal encryption
Let we have 2 messages m_{1}, m_{2} to be encrypted

$$
\begin{array}{ll}
r_{1} \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right) & r_{2} \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right) \\
E_{1}=m_{1} \cdot a^{r_{1}} \bmod p & E_{2}=m_{2} \cdot a^{r_{2}} \bmod p \\
D_{1}=g^{r_{1}} \bmod p & D_{2}=g^{r_{2}} \bmod p \\
E_{n C_{a, r_{1}, r_{2}}\left(m_{1} \cdot m_{2}\right)=c_{12}=\left(E_{12}, D_{12}\right)}^{E_{12}=m_{1} \cdot m_{2} \cdot a^{r_{1}+r_{2}} \bmod p=\underbrace{\left(m_{1} \cdot a^{r_{1}} \bmod p\right.}_{E_{1}} \cdot \underbrace{\left.m_{2} \cdot a^{r_{2}} \bmod p\right)}_{E_{2}} \bmod p} \\
E_{12}=E_{1} \cdot E_{2} \bmod p & \underbrace{\left(g^{r_{1}} \bmod p\right.}_{D_{1}} \cdot \underbrace{\left.q^{r_{2}} \bmod p\right)}_{D_{1}} \bmod p \\
D_{12}=g^{r_{1}+r_{2}} \bmod p \\
D_{12}=D_{1} \cdot D_{2} \bmod p & E_{n c}, r_{1}, r_{2}\left(m_{1} \cdot m_{2}\right)=c_{1} \cdot c_{2} \bmod p
\end{array}
$$

Multiplicative isomorphism
Multiplicatively additive isomorphism
$\operatorname{Enc}\left(m_{1}+m_{2}\right)=c_{1}+c_{2} \leftarrow$ Pascal paillier encryption.
One special encryption is instead of m_{1}, m_{2} encryption to encrypt messages $n_{1}=g^{m_{1}}, n_{2}=g^{m_{2}}$

$$
\operatorname{Enc}\left(m_{1}+m_{2}\right)=c_{1} \cdot c_{2}
$$

Homomorphic encryption: cloud computation with encrypted data.
Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice applications in blockchain, public procurement, auctions, gamblings and etc.

$$
\operatorname{Enc}\left(\text { Puke, } m_{1}+m_{2}\right)=c_{1} \bullet c_{2}
$$

